DISCRETE MATHEMATICS: COMBINATORICS AND GRAPH THEORY

Practice Exam 2 Solution

Instructions. Solve any 5 questions and state which 5 you would like graded. Note that this is a sample
exam, and while it bears some similarity to the real exam, the two are not isomorphic.

1. Consider the following;:

(a)

Define a relation R on Z by (a,b) € R if a® — b? < 3. Verify whether R is (i) reflexive (ii)
symmetric and (iii) transitive?

Reflexive: Va € Z,a® — a®> = 0 < 3 therefore R reflexive.

Symmetric: V(a,b) € Z,a? — b*> < 3 does not imply that b> — a? < 3 so R is not symmetric. For
example, 02 — 102 < 3 but 102 — 0% > 3.

Transitive: ¥(a,b,c) € Z,a®> — b*> < 3 and b?> — ¢ < 3 does not imply a? — ¢ < 3 so R is not
transitive. For example, 22 — 12 < 3 and 1! — 0% < 3 but 22 — 0% > 3.

Let A={1,2,3,4,5} and

R=1{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5) } .

Which of the following is an equivalence class?

(1) {1,2,3t (i) {2,3,5} (i) {1,3,4}  (iv) {12}  (v) {1,2,3,4,5}
Only (ii7) is an equivalence class. The elements 1, 3,4 are related to each other and nothing else.

If Ry and Ry are equivalence relations on the set A, then Rq N Ry is an equivalence relation on
A. Prove or disprove.

If Ry is an equivalence relation then Vo € A = (z,z) € R; (since R; reflexive). Similarly if Ry is
an equivalence relation then Vo € A = (z,z) € Ry (since Ry reflexive). Therefore (z,x) € RiNRy
hence R1 N Ry is reflexive.

If (x,y) € Ri N Ry then (z,y) € Ry and (z,y) € Ry. Since both R; and Ry are equivalence
relations, Ry and Ry are both symmetric. It follows that ((y,z) € R1) N ((y,x) € Ra)), therefore
(y,z) € Ry N Ry hence Ry N Ry is symmetric.

If (x,y) € Ry and (y,z) € Ry then (x,2) € Ry (since R; is transitive). Similarly (z,y) € Re
and (y,z) € Ry = (x,2) € Ry (since Ry is transitive). If (z,z) € Ry and (x,z) € Ry then
(z,2z) € Ry N Ry hence Ry N Ry is transitive. It follows that Ry and Ry is an equivalence relation.

2. Solve the following:

(a)

(b)
()

3x =7 (mod 4)

The ged(3,4) = 1| 7 = 1 solution mod 4. Thus 3z + 4y = 7. A simple solution is z = 1,y = 1.
Therefore z =1 (mod 4).

6z =7 (mod 8)

The gcd(6,8) = 217 = no solution

8z =13 (mod 29)

The ged(8,29) = 1 | 13 = 1 solution mod 29. We want to find 8! such that = 13x8~! (mod 29).
By Bezout’s identity 8x + 29y = 1.

29=3%x845 = 5=29-3x%x8

8=1x5+3 = 3=8-1x5=8—-1x(29-3x8) =4x8—-1x29

5=1%x342 = 8=5-1x3=(29-3%x8)—-1x(4x8—-1x%x29)=2x29—-7x38
3=1x2+1 = 1=3-1x2=(4x8-1x29)—1x(2x29—7x8) =11x8—23x29

Therefore z = 13 x 87! = 11 (mod 29) = 27 (mod 29).
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3. Find the smallest positive integer x such that:

x =1 (mod 3)
x =2 (mod 4)
z =3 (mod 5)

Use the CRT: N =3 x4 x5 =60. Ny =20z; =1 (mod 3) = z; = 2 works so N1 = 40 (mod 60).
Ny = 1529 = 2 (mod 4) = x9 = 2 works so N = 30 (mod 60). N3 = 1223 = 3 (mod 5) = z3 = 4
works so N3 = 48 (mod 60). Therefore x = 2x4x54+2x3x5+4x3x4 = 118 (mod 60) = 58 (mod 60).

4. Evaluate the following expressions or verify the identities:

(a) (a+b)"

(a+b)" = (g) a’ b’ + (I) a%o + (;) a’b? + <;> a't® + <Z> a3b* + <;> a®b® + <g> a'td + (;) a®”
=a’ + 7a%" + 21a°0? + 350> + 35a3b* + 21a%0° + 7a' b8 + 7

(b) > (Mt —pn*

k=0

(©) (o) = (:2%):

Expand using factorials.

(n . k) " (n— k)!(nni m—k)  (n —nl!{:)!k! B k!(nni DI <Z>
(d) > (3) =2

k=0
Use the binomial theorem:

Zn: (Z) a" kb = (a + b)"

k=0

To get the equality on the RHS plug in a = 1 and b = 1:

kznjo (Z) 1Rk = Zn: <Z> = (1+1)"=2"

k=0

(e) > 2(7;) =non-1
Zﬁse the binomial theorem and set b = 1:

(z+1)" = > (TZL) 2

Differentiate wrt x:

Set z = 1:
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5. Let ged(a,b) = 1. Show that a®® + 5%(@) =1 (mod ab).
By Euler’s theorem, a®® = 1 (mod b) and b*(*) = 1 (mod a). Notice that a | a®®) = a?(® =0 (mod a)
and b | b?(®) = p?(@) = 0 (mod b). Therefore a®® + b%(@) =1 (mod a) and a?® + b?(@ =1 (mod b).
Note that when ged(a,b) = 1, if alc and b|c then ab|c. To see this, use Bezout’s identity: ax + by = 1.
Multiply by ¢ = cax + cby = c. Since alc and b|c, there exist integers m and n such that am = ¢ and
bn = c. Substitute for ¢ to produce bnax + amby = ¢ = ab(nx + my) = c. Therefore ab|c.
We can apply this small result to conclude that since a®® + () = 1 (mod a) and a®® + p?(@) =
1 (mod b), a®® + %@ =1 (mod ab). O

6. Let p be a prime. Show that (’Z’) =0 (mod p).

Expand the binomial:
P\___ P
i il(p —1)!

Observe that since p is prime, the numerator has a factor of p that cannot be canceled by any term.

We can express this as follows:
—1)!
") =px L 1.)‘
i il(p —1)!

By definition this means that p | (V). O
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