
Discrete Mathematics: Combinatorics and Graph Theory

Practice Exam 2 Solution

Instructions. Solve any 5 questions and state which 5 you would like graded. Note that this is a sample
exam, and while it bears some similarity to the real exam, the two are not isomorphic.

1. Consider the following:

(a) Define a relation R on Z by (a, b) ∈ R if a2 − b2 ≤ 3. Verify whether R is (i) reflexive (ii)
symmetric and (iii) transitive?
Reflexive: ∀a ∈ Z, a2 − a2 = 0 ≤ 3 therefore R reflexive.
Symmetric: ∀(a, b) ∈ Z, a2 − b2 ≤ 3 does not imply that b2 − a2 ≤ 3 so R is not symmetric. For
example, 02 − 102 ≤ 3 but 102 − 02 > 3.
Transitive: ∀(a, b, c) ∈ Z, a2 − b2 ≤ 3 and b2 − c2 ≤ 3 does not imply a2 − c2 ≤ 3 so R is not
transitive. For example, 22 − 12 ≤ 3 and 11 − 02 ≤ 3 but 22 − 02 > 3.

(b) Let A = {1, 2, 3, 4, 5} and

R = {(1, 1), (1, 3), (1, 4), (2, 2), (2, 5), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4), (5, 2), (5, 5)} .

Which of the following is an equivalence class?

(i) {1, 2, 3} (ii) {2, 3, 5} (iii) {1, 3, 4} (iv) {1, 2} (v) {1, 2, 3, 4, 5}
Only (iii) is an equivalence class. The elements 1, 3, 4 are related to each other and nothing else.

(c) If R1 and R2 are equivalence relations on the set A, then R1 ∩ R2 is an equivalence relation on
A. Prove or disprove.
If R1 is an equivalence relation then ∀x ∈ A ⇒ (x, x) ∈ R1 (since R1 reflexive). Similarly if R2 is
an equivalence relation then ∀x ∈ A ⇒ (x, x) ∈ R2 (since R2 reflexive). Therefore (x, x) ∈ R1∩R2

hence R1 ∩R2 is reflexive.
If (x, y) ∈ R1 ∩ R2 then (x, y) ∈ R1 and (x, y) ∈ R2. Since both R1 and R2 are equivalence
relations, R1 and R2 are both symmetric. It follows that ((y, x) ∈ R1) ∩ ((y, x) ∈ R2)), therefore
(y, x) ∈ R1 ∩R2 hence R1 ∩R2 is symmetric.
If (x, y) ∈ R1 and (y, z) ∈ R1 then (x, z) ∈ R1 (since R1 is transitive). Similarly (x, y) ∈ R2

and (y, z) ∈ R2 ⇒ (x, z) ∈ R2 (since R2 is transitive). If (x, z) ∈ R1 and (x, z) ∈ R2 then
(x, z) ∈ R1 ∩R2 hence R1 ∩R2 is transitive. It follows that R1 and R2 is an equivalence relation.

2. Solve the following:

(a) 3x ≡ 7 (mod 4)
The gcd(3, 4) = 1 | 7 ⇒ 1 solution mod 4. Thus 3x+ 4y = 7. A simple solution is x = 1, y = 1.
Therefore x = 1 (mod 4).

(b) 6x ≡ 7 (mod 8)
The gcd(6, 8) = 2 ∤ 7 ⇒ no solution

(c) 8x ≡ 13 (mod 29)
The gcd(8, 29) = 1 | 13 ⇒ 1 solution mod 29. We want to find 8−1 such that x ≡ 13×8−1 (mod 29).
By Bezout’s identity 8x+ 29y = 1.

29 = 3× 8 + 5 ⇒ 5 = 29− 3× 8

8 = 1× 5 + 3 ⇒ 3 = 8− 1× 5 = 8− 1× (29− 3× 8) = 4× 8− 1× 29

5 = 1× 3 + 2 ⇒ 8 = 5− 1× 3 = (29− 3× 8)− 1× (4× 8− 1× 29) = 2× 29− 7× 8

3 = 1× 2 + 1 ⇒ 1 = 3− 1× 2 = (4× 8− 1× 29)− 1× (2× 29− 7× 8) = 11× 8− 3× 29

Therefore x ≡ 13× 8−1 ≡ 11 (mod 29) ≡ 27 (mod 29).
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3. Find the smallest positive integer x such that:

x ≡ 1 (mod 3)

x ≡ 2 (mod 4)

x ≡ 3 (mod 5)

Use the CRT: N = 3 × 4 × 5 = 60. N1 = 20x1 ≡ 1 (mod 3) ⇒ x1 = 2 works so N1 ≡ 40 (mod 60).
N2 = 15x2 ≡ 2 (mod 4) ⇒ x2 = 2 works so N2 ≡ 30 (mod 60). N3 = 12x3 ≡ 3 (mod 5) ⇒ x3 = 4
works so N3 ≡ 48 (mod 60). Therefore x = 2×4×5+2×3×5+4×3×4 = 118 (mod 60) ≡ 58 (mod 60).

4. Evaluate the following expressions or verify the identities:

(a) (a+ b)7

(a+ b)7 =

(
7

0

)
a7b0 +

(
7

1

)
a6b1 +

(
7

2

)
a5b2 +

(
7

3

)
a4b3 +

(
7

4

)
a3b4 +

(
7

5

)
a2b5 +

(
7

6

)
a1b6 +

(
7

7

)
a0b7

= a7 + 7a6b1 + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7a1b6 + b7

(b)
n∑

k=0

(
n
k

)
pk(1− p)n−k

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1

(c)
(
n
k

)
=

(
n

n−k

)
.

Expand using factorials.(
n

n− k

)
=

n!

(n− k)!(n− (n− k))!
=

n!

(n− k)!k!
=

n!

k!(n− k)!
=

(
n

k

)
(d)

n∑
k=0

(
n
k

)
= 2n

Use the binomial theorem:
n∑

k=0

(
n

k

)
an−kbk = (a+ b)n

To get the equality on the RHS plug in a = 1 and b = 1:

n∑
k=0

(
n

k

)
1n−k1k =

n∑
k=0

(
n

k

)
= (1 + 1)n = 2n

(e)
n∑

i=0
i
(
n
i

)
= n2n−1

Use the binomial theorem and set b = 1:

(x+ 1)n =
n∑

i=0

(
n

i

)
xi

Differentiate wrt x:

n(x+ 1)n−1 =

n∑
i=0

i

(
n

i

)
xi−1

Set x = 1:

n2n−1 =
n∑

i=0

i

(
n

i

)
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5. Let gcd(a, b) = 1. Show that aϕ(b) + bϕ(a) ≡ 1 (mod ab).
By Euler’s theorem, aϕ(b) = 1 (mod b) and bϕ(a) = 1 (mod a). Notice that a | aϕ(b) ⇒ aϕ(b) ≡ 0 (mod a)
and b | bϕ(a) ⇒ bϕ(a) ≡ 0 (mod b). Therefore aϕ(b) + bϕ(a) ≡ 1 (mod a) and aϕ(b) + bϕ(a) ≡ 1 (mod b).
Note that when gcd(a, b) = 1, if a|c and b|c then ab|c. To see this, use Bezout’s identity: ax+ by = 1.
Multiply by c ⇒ cax+ cby = c. Since a|c and b|c, there exist integers m and n such that am = c and
bn = c. Substitute for c to produce bnax+ amby = c ⇒ ab(nx+my) = c. Therefore ab|c.
We can apply this small result to conclude that since aϕ(b) + bϕ(a) ≡ 1 (mod a) and aϕ(b) + bϕ(a) ≡
1 (mod b), aϕ(b) + bϕ(a) ≡ 1 (mod ab).

6. Let p be a prime. Show that
(
p
i

)
≡ 0 (mod p).

Expand the binomial: (
p

i

)
=

p!

i!(p− i)!

Observe that since p is prime, the numerator has a factor of p that cannot be canceled by any term.
We can express this as follows: (

p

i

)
= p× (p− 1)!

i!(p− i)!

By definition this means that p |
(
p
i

)
.
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