Discrete Mathematics: Combinatorics and Graph Theory

Practice Exam 2 Solution

Instructions. Solve any 5 questions and state which 5 you would like graded. Note that this is a sample exam, and while it bears some similarity to the real exam, the two are not isomorphic.

1. Consider the following:
(a) Define a relation R on \mathbb{Z} by $(a, b) \in R$ if $a^{2}-b^{2} \leq 3$. Verify whether R is (i) reflexive (ii) symmetric and (iii) transitive?
Reflexive: $\forall a \in \mathbb{Z}, a^{2}-a^{2}=0 \leq 3$ therefore R reflexive.
Symmetric: $\forall(a, b) \in \mathbb{Z}, a^{2}-b^{2} \leq 3$ does not imply that $b^{2}-a^{2} \leq 3$ so R is not symmetric. For example, $0^{2}-10^{2} \leq 3$ but $10^{2}-0^{2}>3$.
Transitive: $\forall(a, b, c) \in \mathbb{Z}, a^{2}-b^{2} \leq 3$ and $b^{2}-c^{2} \leq 3$ does not imply $a^{2}-c^{2} \leq 3$ so R is not transitive. For example, $2^{2}-1^{2} \leq 3$ and $1^{1}-0^{2} \leq 3$ but $2^{2}-0^{2}>3$.
(b) Let $A=\{1,2,3,4,5\}$ and

$$
R=\{(1,1),(1,3),(1,4),(2,2),(2,5),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4),(5,2),(5,5)\}
$$

Which of the following is an equivalence class?
(i) $\{1,2,3\}$
(ii) $\{2,3,5\}$
(iii) $\{1,3,4\}$
(iv) $\{1,2\}$
(v) $\quad\{1,2,3,4,5\}$

Only (iii) is an equivalence class. The elements $1,3,4$ are related to each other and nothing else.
(c) If R_{1} and R_{2} are equivalence relations on the set A, then $R_{1} \cap R_{2}$ is an equivalence relation on A. Prove or disprove.
If R_{1} is an equivalence relation then $\forall x \in A \Rightarrow(x, x) \in R_{1}$ (since R_{1} reflexive). Similarly if R_{2} is an equivalence relation then $\forall x \in A \Rightarrow(x, x) \in R_{2}$ (since R_{2} reflexive). Therefore $(x, x) \in R_{1} \cap R_{2}$ hence $R_{1} \cap R_{2}$ is reflexive.
If $(x, y) \in R_{1} \cap R_{2}$ then $(x, y) \in R_{1}$ and $(x, y) \in R_{2}$. Since both R_{1} and R_{2} are equivalence relations, R_{1} and R_{2} are both symmetric. It follows that $\left.\left((y, x) \in R_{1}\right) \cap\left((y, x) \in R_{2}\right)\right)$, therefore $(y, x) \in R_{1} \cap R_{2}$ hence $R_{1} \cap R_{2}$ is symmetric.
If $(x, y) \in R_{1}$ and $(y, z) \in R_{1}$ then $(x, z) \in R_{1}$ (since R_{1} is transitive). Similarly $(x, y) \in R_{2}$ and $(y, z) \in R_{2} \Rightarrow(x, z) \in R_{2}$ (since R_{2} is transitive). If $(x, z) \in R_{1}$ and $(x, z) \in R_{2}$ then $(x, z) \in R_{1} \cap R_{2}$ hence $R_{1} \cap R_{2}$ is transitive. It follows that R_{1} and R_{2} is an equivalence relation.
2. Solve the following:
(a) $3 x \equiv 7(\bmod 4)$

The $\operatorname{gcd}(3,4)=1 \mid 7 \Rightarrow 1$ solution mod 4. Thus $3 x+4 y=7$. A simple solution is $x=1, y=1$. Therefore $x=1(\bmod 4)$.
(b) $6 x \equiv 7(\bmod 8)$

The $\operatorname{gcd}(6,8)=2 \nmid 7 \Rightarrow$ no solution
(c) $8 x \equiv 13(\bmod 29)$

The $\operatorname{gcd}(8,29)=1 \mid 13 \Rightarrow 1$ solution $\bmod 29$. We want to find 8^{-1} such that $x \equiv 13 \times 8^{-1}(\bmod 29)$. By Bezout's identity $8 x+29 y=1$.
$29=3 \times 8+5 \quad \Rightarrow \quad 5=29-3 \times 8$
$8=1 \times 5+3 \quad \Rightarrow \quad 3=8-1 \times 5=8-1 \times(29-3 \times 8)=4 \times 8-1 \times 29$
$5=1 \times 3+2 \quad \Rightarrow \quad 8=5-1 \times 3=(29-3 \times 8)-1 \times(4 \times 8-1 \times 29)=2 \times 29-7 \times 8$
$3=1 \times 2+1 \quad \Rightarrow \quad 1=3-1 \times 2=(4 \times 8-1 \times 29)-1 \times(2 \times 29-7 \times 8)=11 \times 8-3 \times 29$
Therefore $x \equiv 13 \times 8^{-1} \equiv 11(\bmod 29) \equiv 27(\bmod 29)$.
3. Find the smallest positive integer x such that:

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 4) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

Use the CRT: $N=3 \times 4 \times 5=60 . N_{1}=20 x_{1} \equiv 1(\bmod 3) \Rightarrow x_{1}=2$ works so $N_{1} \equiv 40(\bmod 60)$. $N_{2}=15 x_{2} \equiv 2(\bmod 4) \Rightarrow x_{2}=2$ works so $N_{2} \equiv 30(\bmod 60) . \quad N_{3}=12 x_{3} \equiv 3(\bmod 5) \Rightarrow x_{3}=4$ works so $N_{3} \equiv 48(\bmod 60)$. Therefore $x=2 \times 4 \times 5+2 \times 3 \times 5+4 \times 3 \times 4=118(\bmod 60) \equiv 58(\bmod 60)$.
4. Evaluate the following expressions or verify the identities:
(a) $(a+b)^{7}$

$$
\begin{aligned}
(a+b)^{7} & =\binom{7}{0} a^{7} b^{0}+\binom{7}{1} a^{6} b^{1}+\binom{7}{2} a^{5} b^{2}+\binom{7}{3} a^{4} b^{3}+\binom{7}{4} a^{3} b^{4}+\binom{7}{5} a^{2} b^{5}+\binom{7}{6} a^{1} b^{6}+\binom{7}{7} a^{0} b^{7} \\
& =a^{7}+7 a^{6} b^{1}+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a^{1} b^{6}+b^{7}
\end{aligned}
$$

(b) $\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}$

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+(1-p))^{n}=1^{n}=1
$$

(c) $\binom{n}{k}=\binom{n}{n-k}$.

Expand using factorials.

$$
\binom{n}{n-k}=\frac{n!}{(n-k)!(n-(n-k))!}=\frac{n!}{(n-k)!k!}=\frac{n!}{k!(n-k)!}=\binom{n}{k}
$$

(d) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$

Use the binomial theorem:

$$
\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}=(a+b)^{n}
$$

To get the equality on the RHS plug in $a=1$ and $b=1$:

$$
\sum_{k=0}^{n}\binom{n}{k} 1^{n-k} 1^{k}=\sum_{k=0}^{n}\binom{n}{k}=(1+1)^{n}=2^{n}
$$

(e) $\sum_{i=0}^{n} i\binom{n}{i}=n 2^{n-1}$

Use the binomial theorem and set $b=1$:

$$
(x+1)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}
$$

Differentiate wrt x:

$$
n(x+1)^{n-1}=\sum_{i=0}^{n} i\binom{n}{i} x^{i-1}
$$

Set $x=1$:

$$
n 2^{n-1}=\sum_{i=0}^{n} i\binom{n}{i}
$$

5. Let $\operatorname{gcd}(a, b)=1$. Show that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$.

By Euler's theorem, $a^{\phi(b)}=1(\bmod b)$ and $b^{\phi(a)}=1(\bmod a)$. Notice that $a \mid a^{\phi(b)} \Rightarrow a^{\phi(b)} \equiv 0(\bmod a)$ and $b \mid b^{\phi(a)} \Rightarrow b^{\phi(a)} \equiv 0(\bmod b)$. Therefore $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a)$ and $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod b)$.
Note that when $\operatorname{gcd}(a, b)=1$, if $a \mid c$ and $b \mid c$ then $a b \mid c$. To see this, use Bezout's identity: $a x+b y=1$. Multiply by $c \Rightarrow c a x+c b y=c$. Since $a \mid c$ and $b \mid c$, there exist integers m and n such that $a m=c$ and $b n=c$. Substitute for c to produce $b n a x+a m b y=c \Rightarrow a b(n x+m y)=c$. Therefore $a b \mid c$.
We can apply this small result to conclude that since $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a)$ and $a^{\phi(b)}+b^{\phi(a)} \equiv$ $1(\bmod b), a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$.
6. Let p be a prime. Show that $\binom{p}{i} \equiv 0(\bmod p)$.

Expand the binomial:

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!}
$$

Observe that since p is prime, the numerator has a factor of p that cannot be canceled by any term. We can express this as follows:

$$
\binom{p}{i}=p \times \frac{(p-1)!}{i!(p-i)!}
$$

By definition this means that $p \left\lvert\,\binom{ p}{i}\right.$.

